The .p;q/ Generalized Anti-reflexive Extremal Rank Solutions to a System of Matrix Equations
نویسنده
چکیده
Let n n complex matrices P andQ be nontrivial generalized reflection matrices, i.e., P D P D P 1 ¤ In, Q DQ DQ 1 ¤ In. A complex matrix A with order n is said to be a .P;Q/ generalized anti-reflexive matrix, if PAQ D A. We in this paper mainly investigate the .P;Q/ generalized anti-reflexive maximal and minimal rank solutions to the system of matrix equation AX D B . We present necessary and sufficient conditions for the existence of the maximal and minimal rank solutions, with .P;Q/ generalized anti-reflexive, of the system. Expressions of such solutions to this system are also given when the solvability conditions are satisfied. In addition, in correspondence with the minimal rank solution set to the system, the explicit expression of the nearest matrix to a given matrix in the Frobenius norm has been provided. 2000 Mathematics Subject Classification: 15A29
منابع مشابه
Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملIterative algorithm for the generalized $(P,Q)$-reflexive solution of a quaternion matrix equation with $j$-conjugate of the unknowns
In the present paper, we propose an iterative algorithm for solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} {underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$. By this iterative algorithm, the solvability of the problem can be determined automatically. When the matrix equation is consistent over...
متن کاملExtremal Positive Solutions For The Distributed Order Fractional Hybrid Differential Equations
In this article, we prove the existence of extremal positive solution for the distributed order fractional hybrid differential equation$$int_{0}^{1}b(q)D^{q}[frac{x(t)}{f(t,x(t))}]dq=g(t,x(t)),$$using a fixed point theorem in the Banach algebras. This proof is given in two cases of the continuous and discontinuous function $g$, under the generalized Lipschitz and Caratheodory conditions.
متن کاملRanks of the common solution to some quaternion matrix equations with applications
We derive the formulas of the maximal andminimal ranks of four real matrices $X_{1},X_{2},X_{3}$ and $X_{4}$in common solution $X=X_{1}+X_{2}i+X_{3}j+X_{4}k$ to quaternionmatrix equations $A_{1}X=C_{1},XB_{2}=C_{2},A_{3}XB_{3}=C_{3}$. Asapplications, we establish necessary and sufficient conditions forthe existence of the common real and complex solutions to the matrixequations. We give the exp...
متن کاملAn iterative algorithm for the generalized re”exive solutions of the general coupled matrix equations
(including the generalized coupled Sylvester matrix equations as special cases) have numerous applications in control and system theory. In this paper, an iterative algorithm is constructed to solve the general coupled matrix equations and their optimal approximation problem over generalized reflexive matrix solution (X1,X2, . . . ,Xq). When the general coupled matrix equations are consistent o...
متن کامل